

Mathematics (MEI)

Advanced GCE

Unit 4768: Statistics 3

Mark Scheme for June 2011

PMT

Q1				
(i)	 <i>t</i> test might be used because population variance is unknown background population is Normal 	E1 E1	Allow "sample is small" as an alternative.	2
(ii)	H ₀ : $\mu = 15.3$ H ₁ : $\mu < 15.3$		Both hypotheses. Hypotheses in words only must include "population". Do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	
	where μ is the mean of Gerry's times.	B1	For adequate verbal definition. Allow absence of "population" if correct notation μ is used.	
	$\overline{x} = 14.987$ $s_{n-1} = 0.4567(5)$	B1	$s_n = 0.4333$ but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there.	
	Test statistic is $\frac{14.987 - 15.3}{\frac{0.45675}{\sqrt{10}}}$	M1	Allow c's \overline{x} and/or s_{n-1} . Allow alternative: 15.3 + (c's -1.833) $\times \frac{0.45675}{\sqrt{10}}$ (= 15.035) for subsequent comparison with \overline{x} . (Or \overline{x} - (c's -1.833) $\times \frac{0.45675}{\sqrt{10}}$	
	= -2.167(0).	A1	$\sqrt{10}$ (= 15.252) for comparison with 15.3.) c.a.o. but ft from here in any case if wrong. Use of $\mu - \overline{x}$ scores M1A0, but ft.	
	Refer to <i>t</i> ₉ . Single-tailed 5% point is –1.833.	M1 A1	No ft from here if wrong. Must be minus 1.833 unless absolute values are being compared. No ft from here if wrong. P(t < -2.167(0)) = 0.0292.	
	Significant. Seems that Gerry's times have been reduced on average.	A1 A1	ft only c's test statistic. ft only c's test statistic. Conclusion in context to include "average" o.e.	9
(iii)	A 5% significance level means that the probability of rejecting H_0 given that it is true is 0.05. Decreasing the significance level would make it less			
	likely that a true H_0 would be rejected. Evidence for rejecting H_0 would need to be stronger.	E1 E1	Or equivalent. Allow answers that relate to the context of the question.	3
(iv)	CI is given by $14.987 \pm$	M1	ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_9 is OK.	
	$2.262 \times \frac{0.45675}{\sqrt{10}}$	B1 M1		
	= 14.987 ± 0.3267= (14.66(0), 15.31(3))	A1	c.a.o. Must be expressed as an interval.	4
				18

							I					
Q2												
(i)												
(-)		No. particles	0	1	2			3	4	5	2	
		Obs fr	4	7	10)		20	17	-		
		Prob'y	0.0150	0.0630	0.13	322	0	0.1852	0.1944			
		Expfr	1.50	6.30	13.	22		18.52	19.44			
		Contrib to X^2	(4.1667)	(0.0778)	0.78	343	0	0.1183	0.3063			
		Combined	1 7. 1.3	1 80 128							-	
						M1	L	Probs correct to 3d.p. or better.				
				M1	L	\times 100 for expected frequencies.						
						A1		All correct.				
	$X^2 = 1.31$	128 + 0.7843 + 0.	1183 + 0.30	063 + 0.1083	3 +	M1		Merge first 2 cells.				
	0.18	313 + 0.6676 + 0.4	4056			M1		Calculation of X^2 .				
	= 3.884(5)				AI		c.a.o. (For ungrouped cells $X^2 = 6.816$.)					
	II. The Deisson model fits the date				B1		Ignora	any rafara	nce to th	na naramatar		
	H_0 : The Poisson model does not fit the data			B1		Do not	t accent "d	ata fit m	odel" oe			
	11]. The roisson model does not in the data.						Dono	ueeept u	ata m			
	Refer to χ_{ϵ}^2 .			M1	L	Allow	correct df	(= cells	– 2) from			
							wrong	ly grouped	table ar	nd ft.		
	Upper 100/ point is 10.64						Otherv	vise, no ft	if wrong			
	Upper 10% point is 10.64.				A1		No ft f	from here i	f wrong.	$(\chi_7^2 = 12.02)$		
							$P(X^2 >$	3.884) = ().6924.			
	Not significant.				A1		ft only	c's test sta	atistic.			
	Evidence suggests that the model fits the data.				A1		ft only	c's test sta	atistic. D	o not accept	12	
							"data f	"it model"	oe.			
()							D (1	A (1	.1	· 1		
(11)	$H_0: m = 15$ $H_1: m > 15$ where m is the population madian diameter(in um)				BI B1		Both.	Accept hyp	otheses	in words.		
	where <i>m</i> is the population median diameter(in μ m).				DI		"nonul	lation"		to include		
								popul	ation .			
	Given $W_{-} = 53$ (: $W_{+} = 157$)											
	Refer to tables of Wilcoxon paired (/single sample)				М1		No ft f	from here i	fwrong			
	statistic for $n = 20$.				1011		10111		i wiong.			
	Lower 5% point is 60 (or upper is 150 if W_{\perp} used).			A1		i.e. a 1	-tail test. N	No ft from	m here if			
						wrong						
	Result is significant.				A1		ft only	c's test sta	atistic.			
	Evidence	e suggests that the	e median dia	ameter appe	ars	A1		ft only	c's test sta	atistic. C	onclusion in	6
	to be mo	re than 15 μm.						contex	t to includ	e "avera	ge" o.e.	
						<u> </u>						10
												18

Q3				
(i) (A)	G(X) 1 X	M1 A1 A1	Increasing curve, through (0, 0), in first quadrant only. Asymptotic behaviour. Asymptote labelled; condone absence of axis labels.	3
(B)	For the UQ G(u) = 0.75 $\therefore \left(1 + \frac{u}{200}\right)^{-2} = \frac{1}{4} \therefore u = 200$ For the LQ G(l) = 0.25	M1 A1	Use of $G(x)$ for either quartile. c.a.o.	
	$\therefore \left(1 + \frac{l}{200}\right)^{-2} = \frac{3}{4} \therefore l = 200 \left(\frac{2}{\sqrt{3}} - 1\right) = 30.94$ $\therefore IQR = 200 - 30.94 = 169(.06)$ For an outlier $x > UQ + 1.5 \times IQR = 200 + 1.5 \times 169$ =453(.58) \approx 454 (nearest hour)	A1 M1 M1 E1	c.a.o. UQ – LQ UQ +1.5 × IQR. Answer given; must be obtained genuinely.	6
(ii) (A)	$F(x) = \int_{0}^{x} \frac{1}{200} e^{\frac{-t}{200}} dt$ $= \left[-e^{\frac{-t}{200}} \right]_{0}^{x} = \left(-e^{\frac{-x}{200}} \right) - \left(-e^{\frac{-0}{200}} \right) = 1 - e^{\frac{-x}{200}}$	M1 A1 E1	Correct integral, including limits (which may be implied subsequently). Correctly integrated. Limits used. Answer given; must be shown convincingly. Condone the omission of $x < 0$ part. Allow use of "+ <i>c</i> " with $F(0) = 0$.	3
(B)	$P(X > 50) = 1 - F(50)$ $= e^{\frac{-50}{200}} = e^{-0.25}$	M1 E1	Use of $1 - F(x)$ Answer given: must be convincing. (= 0.7788(0))	2
(C)	$P(X > 400) = e^{\frac{-400}{200}} = 0.1353(35)$ $P(X > 450) = e^{\frac{-450}{200}} = 0.1053(99)$ $P(X > 450 \mid X > 400) = \frac{P(X > 450)}{P(X > 400)}$ $= \frac{e^{\frac{-450}{200}}}{e^{\frac{-400}{200}}} = e^{\frac{-50}{200}} = e^{-0.25} (= 0.7788)$	B1 B1 M1 A1	Accept any form. Accept any form. Conditional probability. Not $P(X > 50)$ $\times P(X > 400)$ unless <u>clearly</u> justified. Accept division of decimals, 3dp or better. Accept a.w.r.t. 0.778 or 0.779.	4
1		1		18

Mark Scheme

PMT

Q4	$C \sim N(10, 0.4^2)$, $D \sim N(35, 3.5^2)$ When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.				
(i)	$P(C < 9.5) = P\left(Z < \frac{9.5 - 10}{0.4} = -1.25\right)$	M1 A1	For standardising. Award once, here or elsewhere.		
	= 1 - 0.8944 = 0.1056	A1	c.a.o.	3	
(ii)	$D-S = D - (C_1 + C_2 + C_3 + C_4) \sim N(-5,$	B1	Mean. Accept $+5$ for $S - D$.		
	$\sigma^2 = 3.5^2 + (0.4^2 + 0.4^2 + 0.4^2 + 0.4^2) = 12.89)$	B1	Variance. Accept sd (= 3.590).		
	Want $P(D > S) = P(D - S > 0)$	M1	Formulation of requirement. Accept $S - D < 0$. This mark could be awarded in (iii) if not earned here.		
	$= 1 - \Phi\left(\frac{0 - (-5)}{3.59} = 1.39(27)\right)$				
	= 1 - 0.9182 = 0.0818	A1	c.a.o.	4	
(iii)	New $(D-S) = (D \times 1.3) - (C_1 + + C_5) \sim N(-4.5,$	B1	Mean. Accept +4.5 for $S - D$.		
	$\sigma^2 = (3.5^2 \times 1.3^2) + (0.4^2 + + 0.4^2) = 21.5025)$	M1 A1	Correct use of $\times 1.3^2$ for variance. c.a.o. Accept sd (= 4.637)		
	Again want $P(D > S) = P(D - S > 0)$		Or S – D < 0. M1 for formulation in (ii) available here.		
	$= 1 - \Phi\left(\frac{0 - (-4.5)}{4.637} = 0.9704\right)$				
	= 1 - 0.8341 = 0.1659	A1	c.a.o.	4	
(iv)	CI is given by $9.73 \pm$ 1.96 $\times \frac{0.4}{\sqrt{12}}$	M1 B1 M1	1.96 seen.		
	$= 9.73 \pm 0.2263 = (9.50(37), 9.95(63))$	A1	c.a.o. Must be expressed as an interval.		
	Since 10 lies above this interval, it seems that the cheeses are underweight.	E1	Ft c's interval.		
	In repeated sampling, 95% of all confidence intervals constructed in this way will contain the true mean.	E1 E1		7	
				10	
		1		10	